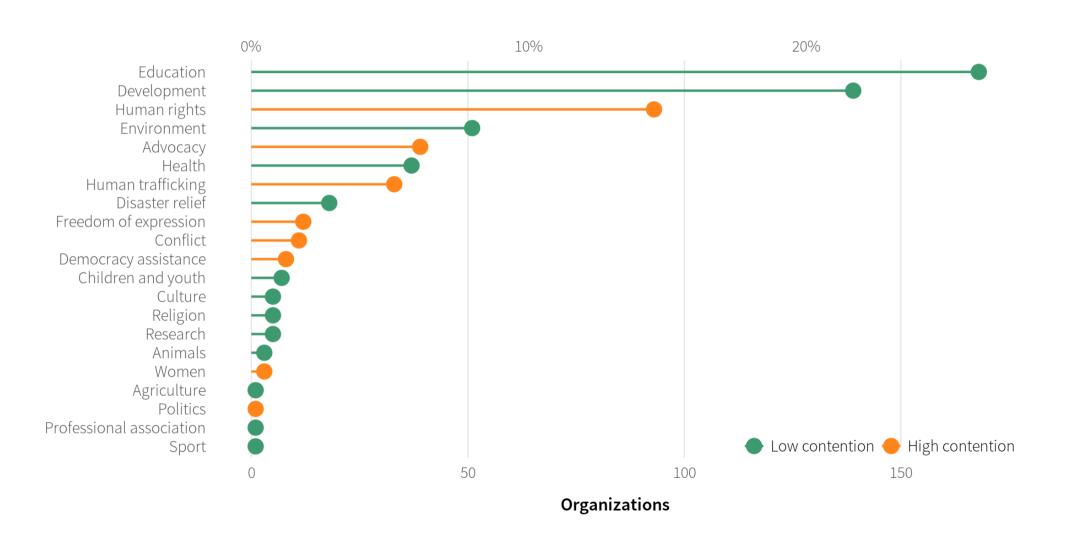
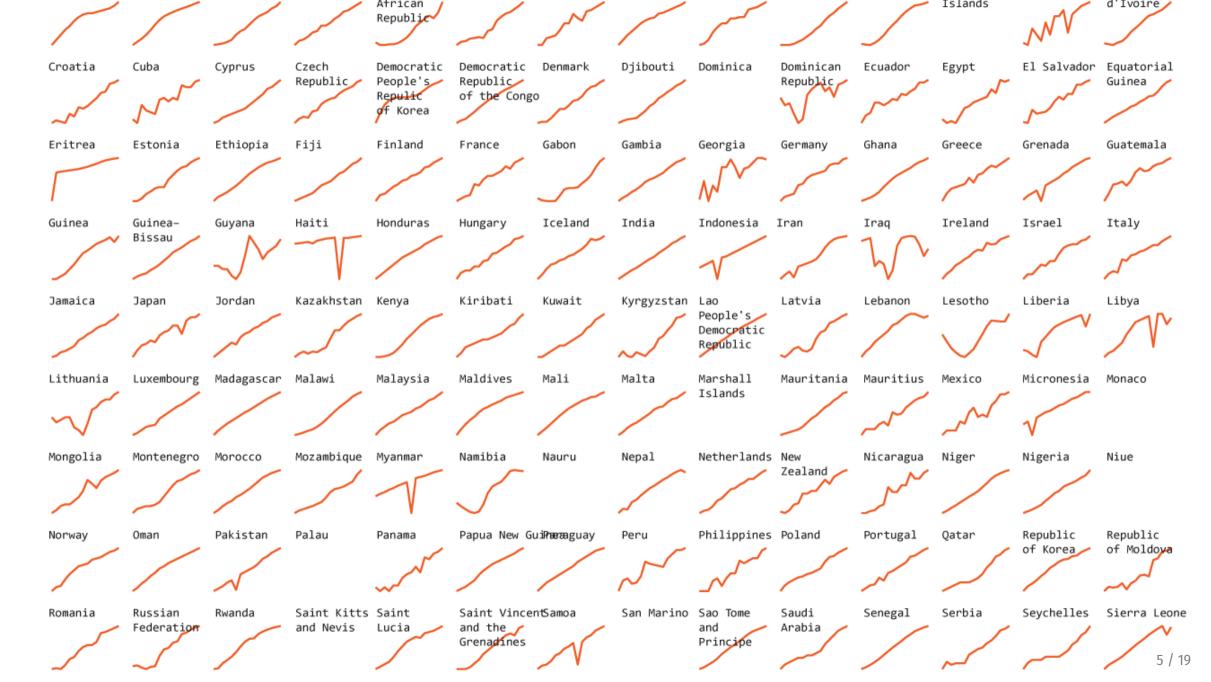
Comparisons

Session 8

PMAP 8921: Data Visualization with R Andrew Young School of Policy Studies Fall 2023

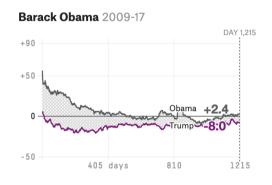

Plan for today

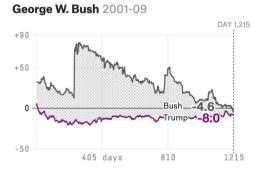

Visualizing comparisons

Reproducible examples

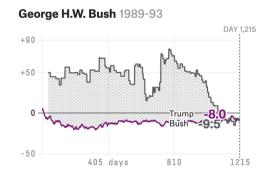
Visualizing comparisons

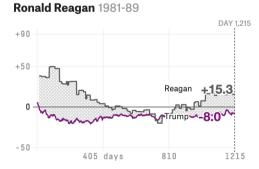
Lollipops and bars

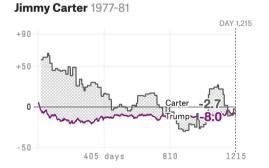


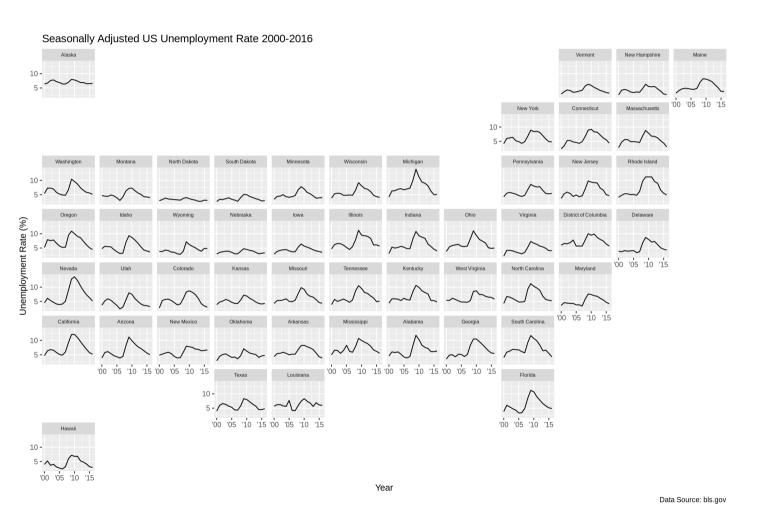

Small multiples

How Trump compares with past presidents


○ Approval rating ○ Disapproval rating ○ Net approval

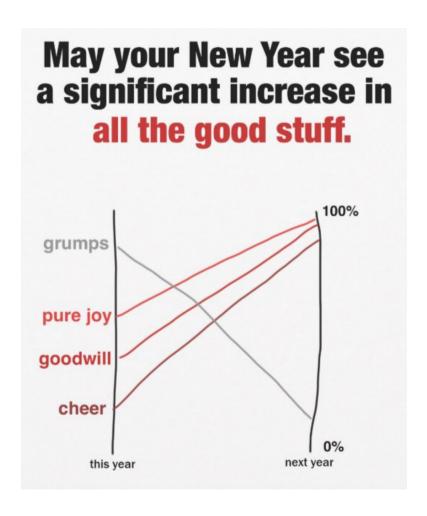

1,215 days 4 years 8 years	1,215 days	4 years	8 years
-----------------------------------	------------	---------	---------





FiveThirtyEight, Trump approval ratings


Small multiples with larger shapes


Sparklines

Mauricio Pochettino has lead Spurs on their best run 8TH 2ND in 24 years of the Premier League

Alibaba stock is at 5 yr high 93.89 Mm. manual 152.11 as of July 2017

Slopegraphs

Slopegraphs

Slopegraphs

Estimates of relative survival rates, by cancer site

	% survival rates and their standard errors				
	5 year	10 year	15 year	20 year	
Prostate	98.8 0.4	95.2 0.9	87.1 1.7	81.1 3.0	
Thyroid	96.0 0.8	95.8 1.2	94.0 1.6	95.4 2.1	
Testis	94.7 1.1	94.0 1.3	91.1 1.8	88.2 2.3	
Melanomas	89.0 0.8	86.7 1.1	83.5 1.5	82.8 1.9	
Breast	86.4 0.4	78.3 0.6	71.3 0.7	65.0 1.0	
Hodgkin's disease	85.1 1.7	79.8 2.0	73.8 2.4	67.I 2.8	
Corpus uteri, uterus	84.3 1.0	83.2 1.3	80.8 1.7	79.2 2.0	
Urinary, bladder	82.1 1.0	76.2 1.4	70.3 1.9	67.9 2.4	
Cervix, uteri	70.5 1.6	64.1 1.8	62.8 2.1	60.0 2.4	
Larynx	68.8 2.1	56.7 2.5	45.8 2.8	37.8 3.1	
Rectum	62.6 1.2	55.2 1.4	51.8 1.8	49.2 2.3	
Kidney, renal pelvis	61.8 1.3	54.4 1.6	49.8 2.0	47.3 2.6	
Colon	61.7 0.8	55.4 1.0	53.9 1.2	52.3 1.6	
Non-Hodgkin's	57.8 1.0	46.3 1.2	38.3 1.4	34.3 1.7	
Oral cavity, pharynx	56.7 1.3	44.2 1.4	37.5 1.6	33.0 1.8	
Ovary	55.0 1.3	49.3 1.6	49.9 1.9	49.6 2.4	
Leukemia	42.5 1.2	32.4 1.3	29.7 1.5	26.2 1.7	
Brain, nervous system	32.0 1.4	29.2 1.5	27.6 1.6	26.1 1.9	

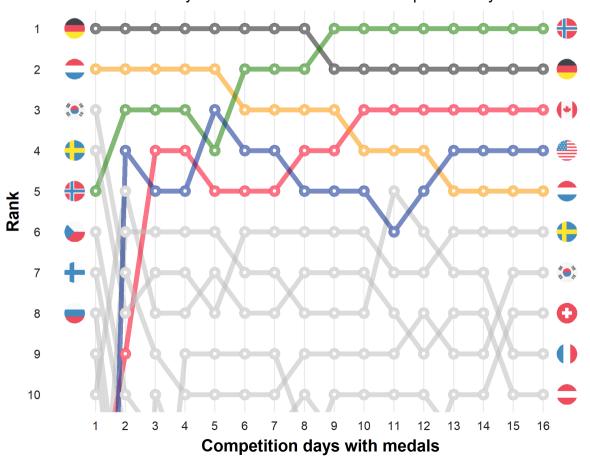
Estimates of % survival rates

15 year

20 year

11 / 19

IO year


	5 year	10 year	15 year	20 year		
Prostate	99 —	95				
			87			
				81		
Thyroid	96	96 ——	94 —	95		
Testis	95 ——	94 —	01			
Melanomas	89 —	87 —	91-	88		
Breast	86	07	84 ——	83		
Hodgkin's disease		78				
	85 —	80	71 74			
		00	74	65		
	0.4			67		
Corpus uteri, uterus		83 ——	—			
Urinary, bladder	82	76		,,		
Cervix, uteri	71	76	70 —			
Larynx	69	64 —		68		
Lui / II A	0,	٠.	63 —	60		
		57				
Rectum	63		46			
Nectuiii	03					

5 year

Bump charts

PyeongChang 2018 Olympic Winter Games

Countries ranked by overall medals after each competition day

Reproducible examples

This is 100% normal!

Broken cake

Help! My cake broke!

VS.

Help! I followed these 6 steps and my cake broke!

Same principle applies to code

Reprexes

Reproducible examples

Something anyone can run on their computer to reproduce the problem you're facing

Debugging and reprexes

Simplify your code down to something very basic

Add additional things until stuff breaks

Use a subset of your data or invent fake data

Restart your session and see if it runs in a new session

Ask the internet for help using your toy example

75% of the time you'll find what's wrong as you make the reprex!

Making datasets with tribble()

```
my_data <- tribble(
    ~animal, ~number,
    "cat", 5,
    "dog", 4,
    "bear", 7,
    "bison", 1
)</pre>
```

```
my_data
```

Example reprex

```
my_data <- tribble(</pre>
  ~animal, ~number,
  "cat", 5,
  "dog", 4,
 "bear", 7,
  "bison", 1
# This plot has a fill legend, but I want to remove it because it's redundant
# What's the best way to get rid of the fill?
ggplot(fake_data, aes(x = animal, y = number, fill = animal)) +
  geom_col()
  # I add something here, but what?
```